In [1]:
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in 

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory

from subprocess import check_output
#print(check_output(["ls", "/home/neo/Desktop/kaggle/Stocks"]).decode("utf8"))

# Any results you write to the current directory are saved as output.
In [7]:
import time
import copy
import numpy as np
import pandas as pd
import chainer
import chainer.functions as F
import chainer.links as L
from plotly import tools
from plotly.graph_objs import *
from plotly.offline import init_notebook_mode, iplot, iplot_mpl
init_notebook_mode()
In [9]:
data = pd.read_csv('/home/neo/Desktop/kaggle/Stocks/goog.us.txt')
data['Date'] = pd.to_datetime(data['Date'])
data = data.set_index('Date')
print(data.index.min(), data.index.max())
data.head()
(Timestamp('2014-03-27 00:00:00'), Timestamp('2017-11-10 00:00:00'))
Out[9]:
Open High Low Close Volume OpenInt
Date
2014-03-27 568.00 568.00 552.92 558.46 13052 0
2014-03-28 561.20 566.43 558.67 559.99 41003 0
2014-03-31 566.89 567.00 556.93 556.97 10772 0
2014-04-01 558.71 568.45 558.71 567.16 7932 0
2014-04-02 599.99 604.83 562.19 567.00 146697 0
In [10]:
date_split = '2016-01-01'
train = data[:date_split]
test = data[date_split:]
len(train), len(test)
Out[10]:
(446, 470)
In [11]:
def plot_train_test(train, test, date_split):
    
    data = [
        Candlestick(x=train.index, open=train['Open'], high=train['High'], low=train['Low'], close=train['Close'], name='train'),
        Candlestick(x=test.index, open=test['Open'], high=test['High'], low=test['Low'], close=test['Close'], name='test')
    ]
    layout = {
         'shapes': [
             {'x0': date_split, 'x1': date_split, 'y0': 0, 'y1': 1, 'xref': 'x', 'yref': 'paper', 'line': {'color': 'rgb(0,0,0)', 'width': 1}}
         ],
        'annotations': [
            {'x': date_split, 'y': 1.0, 'xref': 'x', 'yref': 'paper', 'showarrow': False, 'xanchor': 'left', 'text': ' test data'},
            {'x': date_split, 'y': 1.0, 'xref': 'x', 'yref': 'paper', 'showarrow': False, 'xanchor': 'right', 'text': 'train data '}
        ]
    }
    figure = Figure(data=data, layout=layout)
    iplot(figure)
    
In [12]:
plot_train_test(train, test, date_split)
In [13]:
class Environment1:
    
    def __init__(self, data, history_t=90):
        self.data = data
        self.history_t = history_t
        self.reset()
        
    def reset(self):
        self.t = 0
        self.done = False
        self.profits = 0
        self.positions = []
        self.position_value = 0
        self.history = [0 for _ in range(self.history_t)]
        return [self.position_value] + self.history # obs
    
    def step(self, act):
        reward = 0
        
        # act = 0: stay, 1: buy, 2: sell
        if act == 1:
            self.positions.append(self.data.iloc[self.t, :]['Close'])
        elif act == 2: # sell
            if len(self.positions) == 0:
                reward = -1
            else:
                profits = 0
                for p in self.positions:
                    profits += (self.data.iloc[self.t, :]['Close'] - p)
                reward += profits
                self.profits += profits
                self.positions = []
        
        # set next time
        self.t += 1
        self.position_value = 0
        for p in self.positions:
            self.position_value += (self.data.iloc[self.t, :]['Close'] - p)
        self.history.pop(0)
        self.history.append(self.data.iloc[self.t, :]['Close'] - self.data.iloc[(self.t-1), :]['Close'])
        
        # clipping reward
        if reward > 0:
            reward = 1
        elif reward < 0:
            reward = -1
        
        return [self.position_value] + self.history, reward, self.done # obs, reward, done
In [14]:
env = Environment1(train)
print(env.reset())
for _ in range(3):
    pact = np.random.randint(3)
    print(env.step(pact))
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5299999999999727], 0, False)
([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5299999999999727, -3.019999999999982], 0, False)
([10.18999999999994, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.5299999999999727, -3.019999999999982, 10.18999999999994], 0, False)
In [15]:
# DQN

def train_dqn(env):

    class Q_Network(chainer.Chain):

        def __init__(self, input_size, hidden_size, output_size):
            super(Q_Network, self).__init__(
                fc1 = L.Linear(input_size, hidden_size),
                fc2 = L.Linear(hidden_size, hidden_size),
                fc3 = L.Linear(hidden_size, output_size)
            )

        def __call__(self, x):
            h = F.relu(self.fc1(x))
            h = F.relu(self.fc2(h))
            y = self.fc3(h)
            return y

        def reset(self):
            self.zerograds()

    Q = Q_Network(input_size=env.history_t+1, hidden_size=100, output_size=3)
    Q_ast = copy.deepcopy(Q)
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(Q)

    epoch_num = 50
    step_max = len(env.data)-1
    memory_size = 200
    batch_size = 20
    epsilon = 1.0
    epsilon_decrease = 1e-3
    epsilon_min = 0.1
    start_reduce_epsilon = 200
    train_freq = 10
    update_q_freq = 20
    gamma = 0.97
    show_log_freq = 5

    memory = []
    total_step = 0
    total_rewards = []
    total_losses = []

    start = time.time()
    for epoch in range(epoch_num):

        pobs = env.reset()
        step = 0
        done = False
        total_reward = 0
        total_loss = 0

        while not done and step < step_max:

            # select act
            pact = np.random.randint(3)
            if np.random.rand() > epsilon:
                pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
                pact = np.argmax(pact.data)

            # act
            obs, reward, done = env.step(pact)

            # add memory
            memory.append((pobs, pact, reward, obs, done))
            if len(memory) > memory_size:
                memory.pop(0)

            # train or update q
            if len(memory) == memory_size:
                if total_step % train_freq == 0:
                    shuffled_memory = np.random.permutation(memory)
                    memory_idx = range(len(shuffled_memory))
                    for i in memory_idx[::batch_size]:
                        batch = np.array(shuffled_memory[i:i+batch_size])
                        b_pobs = np.array(batch[:, 0].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_pact = np.array(batch[:, 1].tolist(), dtype=np.int32)
                        b_reward = np.array(batch[:, 2].tolist(), dtype=np.int32)
                        b_obs = np.array(batch[:, 3].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_done = np.array(batch[:, 4].tolist(), dtype=np.bool)

                        q = Q(b_pobs)
                        maxq = np.max(Q_ast(b_obs).data, axis=1)
                        target = copy.deepcopy(q.data)
                        for j in range(batch_size):
                            target[j, b_pact[j]] = b_reward[j]+gamma*maxq[j]*(not b_done[j])
                        Q.reset()
                        loss = F.mean_squared_error(q, target)
                        total_loss += loss.data
                        loss.backward()
                        optimizer.update()

                if total_step % update_q_freq == 0:
                    Q_ast = copy.deepcopy(Q)

            # epsilon
            if epsilon > epsilon_min and total_step > start_reduce_epsilon:
                epsilon -= epsilon_decrease

            # next step
            total_reward += reward
            pobs = obs
            step += 1
            total_step += 1

        total_rewards.append(total_reward)
        total_losses.append(total_loss)

        if (epoch+1) % show_log_freq == 0:
            log_reward = sum(total_rewards[((epoch+1)-show_log_freq):])/show_log_freq
            log_loss = sum(total_losses[((epoch+1)-show_log_freq):])/show_log_freq
            elapsed_time = time.time()-start
            print('\t'.join(map(str, [epoch+1, epsilon, total_step, log_reward, log_loss, elapsed_time])))
            start = time.time()
            
    return Q, total_losses, total_rewards
    
In [16]:
Q, total_losses, total_rewards = train_dqn(Environment1(train))
5	0.1	2225	-29	31894.690320317448	16.6332190037
10	0.1	4450	-39	2213.213397538662	15.7692198753
15	0.1	6675	-49	482.09604486078024	15.0305671692
20	0.1	8900	-20	531.5634224850685	14.7133560181
25	0.1	11125	-7	249.56501236390324	16.8163478374
30	0.1	13350	-9	159.63941418500616	16.5753087997
35	0.1	15575	2	74.22810600628145	17.2571020126
40	0.1	17800	2	44.75742576988414	14.0363788605
45	0.1	20025	12	29.523127409629524	15.0683138371
50	0.1	22250	7	422.00073512424717	15.6465649605
In [17]:
def plot_loss_reward(total_losses, total_rewards):

    figure = tools.make_subplots(rows=1, cols=2, subplot_titles=('loss', 'reward'), print_grid=False)
    figure.append_trace(Scatter(y=total_losses, mode='lines', line=dict(color='skyblue')), 1, 1)
    figure.append_trace(Scatter(y=total_rewards, mode='lines', line=dict(color='orange')), 1, 2)
    figure['layout']['xaxis1'].update(title='epoch')
    figure['layout']['xaxis2'].update(title='epoch')
    figure['layout'].update(height=400, width=900, showlegend=False)
    iplot(figure)
    
In [18]:
plot_loss_reward(total_losses, total_rewards)
In [19]:
def plot_train_test_by_q(train_env, test_env, Q, algorithm_name):
    
    # train
    pobs = train_env.reset()
    train_acts = []
    train_rewards = []

    for _ in range(len(train_env.data)-1):
        
        pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
        pact = np.argmax(pact.data)
        train_acts.append(pact)
            
        obs, reward, done = train_env.step(pact)
        train_rewards.append(reward)

        pobs = obs
        
    train_profits = train_env.profits
    
    # test
    pobs = test_env.reset()
    test_acts = []
    test_rewards = []

    for _ in range(len(test_env.data)-1):
    
        pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
        pact = np.argmax(pact.data)
        test_acts.append(pact)
            
        obs, reward, done = test_env.step(pact)
        test_rewards.append(reward)

        pobs = obs
        
    test_profits = test_env.profits
    
    # plot
    train_copy = train_env.data.copy()
    test_copy = test_env.data.copy()
    train_copy['act'] = train_acts + [np.nan]
    train_copy['reward'] = train_rewards + [np.nan]
    test_copy['act'] = test_acts + [np.nan]
    test_copy['reward'] = test_rewards + [np.nan]
    train0 = train_copy[train_copy['act'] == 0]
    train1 = train_copy[train_copy['act'] == 1]
    train2 = train_copy[train_copy['act'] == 2]
    test0 = test_copy[test_copy['act'] == 0]
    test1 = test_copy[test_copy['act'] == 1]
    test2 = test_copy[test_copy['act'] == 2]
    act_color0, act_color1, act_color2 = 'gray', 'cyan', 'magenta'

    data = [
        Candlestick(x=train0.index, open=train0['Open'], high=train0['High'], low=train0['Low'], close=train0['Close'], increasing=dict(line=dict(color=act_color0)), decreasing=dict(line=dict(color=act_color0))),
        Candlestick(x=train1.index, open=train1['Open'], high=train1['High'], low=train1['Low'], close=train1['Close'], increasing=dict(line=dict(color=act_color1)), decreasing=dict(line=dict(color=act_color1))),
        Candlestick(x=train2.index, open=train2['Open'], high=train2['High'], low=train2['Low'], close=train2['Close'], increasing=dict(line=dict(color=act_color2)), decreasing=dict(line=dict(color=act_color2))),
        Candlestick(x=test0.index, open=test0['Open'], high=test0['High'], low=test0['Low'], close=test0['Close'], increasing=dict(line=dict(color=act_color0)), decreasing=dict(line=dict(color=act_color0))),
        Candlestick(x=test1.index, open=test1['Open'], high=test1['High'], low=test1['Low'], close=test1['Close'], increasing=dict(line=dict(color=act_color1)), decreasing=dict(line=dict(color=act_color1))),
        Candlestick(x=test2.index, open=test2['Open'], high=test2['High'], low=test2['Low'], close=test2['Close'], increasing=dict(line=dict(color=act_color2)), decreasing=dict(line=dict(color=act_color2)))
    ]
    title = '{}: train s-reward {}, profits {}, test s-reward {}, profits {}'.format(
        algorithm_name,
        int(sum(train_rewards)),
        int(train_profits),
        int(sum(test_rewards)),
        int(test_profits)
    )
    layout = {
        'title': title,
        'showlegend': False,
         'shapes': [
             {'x0': date_split, 'x1': date_split, 'y0': 0, 'y1': 1, 'xref': 'x', 'yref': 'paper', 'line': {'color': 'rgb(0,0,0)', 'width': 1}}
         ],
        'annotations': [
            {'x': date_split, 'y': 1.0, 'xref': 'x', 'yref': 'paper', 'showarrow': False, 'xanchor': 'left', 'text': ' test data'},
            {'x': date_split, 'y': 1.0, 'xref': 'x', 'yref': 'paper', 'showarrow': False, 'xanchor': 'right', 'text': 'train data '}
        ]
    }
    figure = Figure(data=data, layout=layout)
    iplot(figure)
    
In [20]:
plot_train_test_by_q(Environment1(train), Environment1(test), Q, 'DQN')
In [21]:
# Double DQN

def train_ddqn(env):

    class Q_Network(chainer.Chain):

        def __init__(self, input_size, hidden_size, output_size):
            super(Q_Network, self).__init__(
                fc1 = L.Linear(input_size, hidden_size),
                fc2 = L.Linear(hidden_size, hidden_size),
                fc3 = L.Linear(hidden_size, output_size)
            )

        def __call__(self, x):
            h = F.relu(self.fc1(x))
            h = F.relu(self.fc2(h))
            y = self.fc3(h)
            return y

        def reset(self):
            self.zerograds()

    Q = Q_Network(input_size=env.history_t+1, hidden_size=100, output_size=3)
    Q_ast = copy.deepcopy(Q)
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(Q)

    epoch_num = 50
    step_max = len(env.data)-1
    memory_size = 200
    batch_size = 50
    epsilon = 1.0
    epsilon_decrease = 1e-3
    epsilon_min = 0.1
    start_reduce_epsilon = 200
    train_freq = 10
    update_q_freq = 20
    gamma = 0.97
    show_log_freq = 5

    memory = []
    total_step = 0
    total_rewards = []
    total_losses = []

    start = time.time()
    for epoch in range(epoch_num):

        pobs = env.reset()
        step = 0
        done = False
        total_reward = 0
        total_loss = 0

        while not done and step < step_max:

            # select act
            pact = np.random.randint(3)
            if np.random.rand() > epsilon:
                pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
                pact = np.argmax(pact.data)

            # act
            obs, reward, done = env.step(pact)

            # add memory
            memory.append((pobs, pact, reward, obs, done))
            if len(memory) > memory_size:
                memory.pop(0)

            # train or update q
            if len(memory) == memory_size:
                if total_step % train_freq == 0:
                    shuffled_memory = np.random.permutation(memory)
                    memory_idx = range(len(shuffled_memory))
                    for i in memory_idx[::batch_size]:
                        batch = np.array(shuffled_memory[i:i+batch_size])
                        b_pobs = np.array(batch[:, 0].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_pact = np.array(batch[:, 1].tolist(), dtype=np.int32)
                        b_reward = np.array(batch[:, 2].tolist(), dtype=np.int32)
                        b_obs = np.array(batch[:, 3].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_done = np.array(batch[:, 4].tolist(), dtype=np.bool)

                        q = Q(b_pobs)
                        """ <<< DQN -> Double DQN
                        maxq = np.max(Q_ast(b_obs).data, axis=1)
                        === """
                        indices = np.argmax(q.data, axis=1)
                        maxqs = Q_ast(b_obs).data
                        """ >>> """
                        target = copy.deepcopy(q.data)
                        for j in range(batch_size):
                            """ <<< DQN -> Double DQN
                            target[j, b_pact[j]] = b_reward[j]+gamma*maxq[j]*(not b_done[j])
                            === """
                            target[j, b_pact[j]] = b_reward[j]+gamma*maxqs[j, indices[j]]*(not b_done[j])
                            """ >>> """
                        Q.reset()
                        loss = F.mean_squared_error(q, target)
                        total_loss += loss.data
                        loss.backward()
                        optimizer.update()

                if total_step % update_q_freq == 0:
                    Q_ast = copy.deepcopy(Q)

            # epsilon
            if epsilon > epsilon_min and total_step > start_reduce_epsilon:
                epsilon -= epsilon_decrease

            # next step
            total_reward += reward
            pobs = obs
            step += 1
            total_step += 1

        total_rewards.append(total_reward)
        total_losses.append(total_loss)

        if (epoch+1) % show_log_freq == 0:
            log_reward = sum(total_rewards[((epoch+1)-show_log_freq):])/show_log_freq
            log_loss = sum(total_losses[((epoch+1)-show_log_freq):])/show_log_freq
            elapsed_time = time.time()-start
            print('\t'.join(map(str, [epoch+1, epsilon, total_step, log_reward, log_loss, elapsed_time])))
            start = time.time()
            
    return Q, total_losses, total_rewards
In [22]:
Q, total_losses, total_rewards = train_ddqn(Environment1(train))
5	0.1	2225	-64	219.02689198553563	9.74659800529
10	0.1	4450	-16	48.37214830815792	8.10562610626
15	0.1	6675	0	28.161071833968162	8.33200907707
20	0.1	8900	5	35.12622814401984	9.39084506035
25	0.1	11125	9	28.7138060471043	10.2405428886
30	0.1	13350	9	5.7818217892199755	10.8828699589
35	0.1	15575	-1	3.917024246416986	10.6095979214
40	0.1	17800	7	3.9121369604486973	11.1484801769
45	0.1	20025	13	3.0701482880394906	10.0272958279
50	0.1	22250	15	1.9878163173096255	11.6226670742
In [23]:
plot_loss_reward(total_losses, total_rewards)
In [24]:
plot_train_test_by_q(Environment1(train), Environment1(test), Q, 'Double DQN')
In [25]:
# Dueling Double DQN

def train_dddqn(env):

    """ <<< Double DQN -> Dueling Double DQN
    class Q_Network(chainer.Chain):

        def __init__(self, input_size, hidden_size, output_size):
            super(Q_Network, self).__init__(
                fc1 = L.Linear(input_size, hidden_size),
                fc2 = L.Linear(hidden_size, hidden_size),
                fc3 = L.Linear(hidden_size, output_size)
            )

        def __call__(self, x):
            h = F.relu(self.fc1(x))
            h = F.relu(self.fc2(h))
            y = self.fc3(h)
            return y

        def reset(self):
            self.zerograds()
    === """
    class Q_Network(chainer.Chain):

        def __init__(self, input_size, hidden_size, output_size):
            super(Q_Network, self).__init__(
                fc1 = L.Linear(input_size, hidden_size),
                fc2 = L.Linear(hidden_size, hidden_size),
                fc3 = L.Linear(hidden_size, hidden_size//2),
                fc4 = L.Linear(hidden_size, hidden_size//2),
                state_value = L.Linear(hidden_size//2, 1),
                advantage_value = L.Linear(hidden_size//2, output_size)
            )
            self.input_size = input_size
            self.hidden_size = hidden_size
            self.output_size = output_size

        def __call__(self, x):
            h = F.relu(self.fc1(x))
            h = F.relu(self.fc2(h))
            hs = F.relu(self.fc3(h))
            ha = F.relu(self.fc4(h))
            state_value = self.state_value(hs)
            advantage_value = self.advantage_value(ha)
            advantage_mean = (F.sum(advantage_value, axis=1)/float(self.output_size)).reshape(-1, 1)
            q_value = F.concat([state_value for _ in range(self.output_size)], axis=1) + (advantage_value - F.concat([advantage_mean for _ in range(self.output_size)], axis=1))
            return q_value

        def reset(self):
            self.zerograds()
    """ >>> """

    Q = Q_Network(input_size=env.history_t+1, hidden_size=100, output_size=3)
    Q_ast = copy.deepcopy(Q)
    optimizer = chainer.optimizers.Adam()
    optimizer.setup(Q)

    epoch_num = 50
    step_max = len(env.data)-1
    memory_size = 200
    batch_size = 50
    epsilon = 1.0
    epsilon_decrease = 1e-3
    epsilon_min = 0.1
    start_reduce_epsilon = 200
    train_freq = 10
    update_q_freq = 20
    gamma = 0.97
    show_log_freq = 5

    memory = []
    total_step = 0
    total_rewards = []
    total_losses = []

    start = time.time()
    for epoch in range(epoch_num):

        pobs = env.reset()
        step = 0
        done = False
        total_reward = 0
        total_loss = 0

        while not done and step < step_max:

            # select act
            pact = np.random.randint(3)
            if np.random.rand() > epsilon:
                pact = Q(np.array(pobs, dtype=np.float32).reshape(1, -1))
                pact = np.argmax(pact.data)

            # act
            obs, reward, done = env.step(pact)

            # add memory
            memory.append((pobs, pact, reward, obs, done))
            if len(memory) > memory_size:
                memory.pop(0)

            # train or update q
            if len(memory) == memory_size:
                if total_step % train_freq == 0:
                    shuffled_memory = np.random.permutation(memory)
                    memory_idx = range(len(shuffled_memory))
                    for i in memory_idx[::batch_size]:
                        batch = np.array(shuffled_memory[i:i+batch_size])
                        b_pobs = np.array(batch[:, 0].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_pact = np.array(batch[:, 1].tolist(), dtype=np.int32)
                        b_reward = np.array(batch[:, 2].tolist(), dtype=np.int32)
                        b_obs = np.array(batch[:, 3].tolist(), dtype=np.float32).reshape(batch_size, -1)
                        b_done = np.array(batch[:, 4].tolist(), dtype=np.bool)

                        q = Q(b_pobs)
                        """ <<< DQN -> Double DQN
                        maxq = np.max(Q_ast(b_obs).data, axis=1)
                        === """
                        indices = np.argmax(q.data, axis=1)
                        maxqs = Q_ast(b_obs).data
                        """ >>> """
                        target = copy.deepcopy(q.data)
                        for j in range(batch_size):
                            """ <<< DQN -> Double DQN
                            target[j, b_pact[j]] = b_reward[j]+gamma*maxq[j]*(not b_done[j])
                            === """
                            target[j, b_pact[j]] = b_reward[j]+gamma*maxqs[j, indices[j]]*(not b_done[j])
                            """ >>> """
                        Q.reset()
                        loss = F.mean_squared_error(q, target)
                        total_loss += loss.data
                        loss.backward()
                        optimizer.update()

                if total_step % update_q_freq == 0:
                    Q_ast = copy.deepcopy(Q)

            # epsilon
            if epsilon > epsilon_min and total_step > start_reduce_epsilon:
                epsilon -= epsilon_decrease

            # next step
            total_reward += reward
            pobs = obs
            step += 1
            total_step += 1

        total_rewards.append(total_reward)
        total_losses.append(total_loss)

        if (epoch+1) % show_log_freq == 0:
            log_reward = sum(total_rewards[((epoch+1)-show_log_freq):])/show_log_freq
            log_loss = sum(total_losses[((epoch+1)-show_log_freq):])/show_log_freq
            elapsed_time = time.time()-start
            print('\t'.join(map(str, [epoch+1, epsilon, total_step, log_reward, log_loss, elapsed_time])))
            start = time.time()
            
    return Q, total_losses, total_rewards
In [26]:
Q, total_losses, total_rewards = train_dddqn(Environment1(train))
5	0.1	2225	-24	53.057484205067155	13.4303882122
10	0.1	4450	11	23.163394406065343	17.4501590729
15	0.1	6675	8	8.550441061612219	15.0298330784
20	0.1	8900	9	5.998468506988138	15.2846479416
25	0.1	11125	9	4.51350925900042	15.3760299683
30	0.1	13350	11	4.072754999715835	14.4281949997
35	0.1	15575	25	2.2618689387338238	15.0811309814
40	0.1	17800	12	1.4663135000737384	15.0557510853
45	0.1	20025	8	1.592129576782463	14.3379740715
50	0.1	22250	13	1.1360446021310053	17.8237040043
In [27]:
plot_loss_reward(total_losses, total_rewards)
In [28]:
plot_train_test_by_q(Environment1(train), Environment1(test), Q, 'Dueling Double DQN')